
ACM Reference Format
Bénard, P., Cole, F., Kass, M., Mordatch, I., Hegarty, J., Senn, M., Fleischer, K., Pesare, D., Breeden, K.
2013. Stylizing Animation By Example. ACM Trans. Graph. 32, 4, Article 119 (July 2013), 11 pages.
DOI = 10.1145/2461912.2461929 http://doi.acm.org/10.1145/2461912.2461929.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
Copyright © ACM 0730-0301/13/07-ART119 $15.00.
DOI: http://doi.acm.org/10.1145/2461912.2461929

Stylizing Animation By Example

Pierre Bénard1,2 Forrester Cole1 Michael Kass1 Igor Mordatch1,3 James Hegarty1,4

Martin Sebastian Senn1 Kurt Fleischer1 Davide Pesare1 Katherine Breeden1,4

1Pixar Animation Studios, 2University of Toronto, 3University of Washington, 4Stanford University

Figure 1: Frame 20 (right) to 34 (left) – top row: stylized animation; bottom row: input shaded images. The two extreme frames are
keyframes painted by an artist. Our algorithm synthesized the in-between frames. Note the important variations in terms of shape and
appearance (texture and color) during this sequence. The accompanying video illustrates the temporal behavior.

Abstract

Skilled artists, using traditional media or modern computer painting
tools, can create a variety of expressive styles that are very appeal-
ing in still images, but have been unsuitable for animation. The key
difficulty is that existing techniques lack adequate temporal coher-
ence to animate these styles effectively. Here we augment the range
of practical animation styles by extending the guided texture syn-
thesis method of Image Analogies [Hertzmann et al. 2001] to cre-
ate temporally coherent animation sequences. To make the method
art directable, we allow artists to paint portions of keyframes that
are used as constraints. The in-betweens calculated by our method
maintain stylistic continuity and yet change no more than necessary
over time.

CR Categories: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodologies and Techniques; I.4.9 [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Applications

Keywords: keyframe, texture synthesis, temporal coherence, non-
photorealistic rendering

Links: DL PDF WEB VIDEO

1 Introduction

For many artistic purposes, hand-painted imagery can produce a
warmth and range of styles that is difficult to achieve with 3D com-
puter rendering. To date, however, most handpainted styles re-
main unsuitable for story-telling and character animation because
of the difficulty of maintaining temporal coherence. Fine-scale tex-
ture detail is a particularly important feature of many handpainted
styles, yet it is extremely time consuming – when even possible –
for an artist to ensure by hand that fine-scale texture details change
smoothly enough from frame to frame to prevent flickering, pop-
ping or other unpleasant visual artifacts.

The existing literature includes some algorithmic techniques that
are able to create coherent, detailed, stylized animations for very
particular looks (see Bénard et al. [2011] for a survey). How-
ever, the existing algorithms are not only limited to a narrow range
of styles, but also provide little direct control over the end result.
These limitations pose severe difficulties for animation production
when an art director is trying to achieve a very specific look. It
may be hard to know if a desired look is close to the range of any
existing algorithm, and difficult to modify the algorithms to move
towards a desired look. High-quality character-based story telling
requires a level of flexibility and control that these methods do not
provide.

A more direct approach is to specify a desired look with a set of
visual examples, allowing artists to communicate their desires by
using tools with which they already have considerable skill: paint-
ings or drawings done with traditional or digital media. Hertzmann
et al. [2001] have shown with their Image Analogies work that an
example-based approach can do a good job of generalization for
the creation of stylized still images. Their method uses a pair of
images to define a style transformation, and then applies this trans-
formation to a new input image using guided texture synthesis (Fig-
ure 2). Here we seek to extend this approach to animation. Our

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

http://doi.acm.org/10.1145/2461912.2461929
http://portal.acm.org/ft_gateway.cfm?id=2461929&type=pdf
http://graphics.pixar.com/library/ByExampleStylization/index.html
http://graphics.pixar.com/library/ByExampleStylization/mainVideo.mov

Figure 2: Image Analogy setup. Given a style input S, a style output Ŝ, and a new input image I , the image analogies approach corresponds
colors in S and I to create a stylized output Î . Here, the input I has been rendered to emphasize its silhouettes, encouraging dark outlines in
the output Î .

goal is to create an example-based stylization method that supports
a broad range of styles, provides artists with direct control over the
result, and achieves the temporal coherence necessary for pleasing
painterly animation.

To take advantage of highly-developed tools for creating and edit-
ing character motion and lighting with computers, we begin with lit
3D CG animation as input. Our Temporally Coherent Image Analo-
gies algorithm (TCIA) then transforms the input animation into
a sequence of stylized images with both a characteristic 2D look
and strong temporal continuity. In order to deduce how the image
texture should move, we render image-space velocity fields from
our input animation sequence. We add goal functions to the Im-
age Analogies algorithm that penalize unwanted changes over time,
while taking into consideration both occlusion and dis-occlusion
events. We solve the underlying optimization problem using a
coarse-to-fine version of PatchMatch [Barnes et al. 2009] on a GPU.
Our implementation can compute film-resolution (1080p) anima-
tions at the rate of 10 to 12 minutes per final frame. Full details
of the temporally coherent Image Analogies algorithm (TCIA) are
presented in Section 3. Besides the temporal extensions, we also ex-
tend the image analogies method to handle rotations of the textures,
raster lines stylization, and control of the overall texture statistics.
These additions allow synthesis of patterns along a vector field to
better depict shape (e.g., hatching), generation of textured strokes
along object contours without extracting vector lines, and avoidance
of obvious texture repetition.

In addition to a generic style transformation, we allow the artist to
paint exactly what is desired at important frames (Figure 1). When
full control is applied, this amounts to a keyframe painting system.
The modifications to TCIA necessary to provide interpolation of the
keyframe constraints are presented in section 4. We have found that
good artistic control can be achieved by painting an average of one
out of every 10 to 20 frames of animation. By some standards, this
is a lot of painting, but it is a small fraction of the painting required
for traditional 2D hand-painted methods.

Our main contribution is two-fold. First, we extend image analo-
gies to animation, achieving temporal continuity while taking ac-
count of occlusion and disocclusion. Second, we allow art direction
by modifying the approach to interpolate hand-painted elements at
keyframes. The result is a practical production method that com-
bines the strengths of existing tools for creating and editing motion
and lighting with the warmth, feeling and artistic control of hand-
painted visual styles.

2 Related Work

Our approach is at the intersection of two research fields: non-
photorealistic rendering and texture synthesis. Since they are both
wide fields, we will only review the work most related to our ap-
proach.

2.1 Temporally coherent NPR

Many specialized techniques have been proposed to address the
temporal coherence problems that arises when stylizing anima-
tions [Bénard et al. 2011]. A common approach is to focus on
a specific style of animation and design a method to exploit the
nature of that style: for example, shape abstraction in watercolor
(e.g., [Bousseau et al. 2007]), or the hierarchy of strokes in hatch-
ing (e.g., [Praun et al. 2001; Kalnins et al. 2002]). This approach
can be very effective for the specific target style, but the assump-
tions usually do not translate far beyond the target.

A second approach is to adopt a general, temporally-coherent noise
function, and transform it to yield a visually pleasing stylization
result [Bénard et al. 2009; Bénard et al. 2010; Kass and Pesare
2011]. While noise functions provide a broader range of styles than
tailored algorithms, this range is still limited and those methods are
difficult to art direct.

Stroke-based painting and animation systems [Daniels 1999; Agar-
wala et al. 2004; Schmid et al. 2011; Whited et al. 2012] com-
bine good temporal coherence with good directability, since the
artist can simply paint the strokes they desire. This flexibility, how-
ever, has a major drawback: the artist must paint each stroke, even
in uninteresting areas. In the context of video stylization, semi-
automatic approaches have been proposed to overcome this limita-
tion [Lin et al. 2010; Kagaya et al. 2011; O’Donovan and Hertz-
mann 2011]. Starting from sparse user inputs (assisted segmenta-
tion and labeling, guiding strokes, spatially-varying style parame-
ters), they automatically propagate these constraints in space and
time while optimizing for temporal coherence. However, the range
of styles of these approaches is limited to those that can be depicted
with discrete strokes. For instance, effects created by raster-based
filters (e.g., [Winnemöller et al. 2006]) cannot be easily represented
as strokes. Additionally, we are not aware of any example-based
video stylization methods that support keyframes (see Kyprianidis
et al. [2013] for a survey).

Our approach supports a broader range of styles than previous
methods by using example images to define the style. By styliz-

119:2 • P. Bénard et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

ing animations in 2D image-space while relying on accurate 3D
information, our method gains the best of both worlds: it natively
handles foreshortening and zooming, while ensuring good motion
coherence and temporal continuity. Unlike most of the above tech-
niques, our method produces temporal coherence through optimiza-
tion rather than by construction.

Like Bousseau et al. [2007], we make use of both forward-time
and backwards-time advection to create temporal coherence. How-
ever, instead of using a time-varying blend of the two advections to
compute the final result, we embed our advection in the optimiza-
tion process. Since optimization only selects existing colors from
the style, our algorithm produces a warp rather than a blend. In
the case of a pen-and-ink style containing only blacks and whites,
for example, our output contains only blacks and whites, while any
blending approach will create intermediate gray values, perceptible
as ghosting artifacts.

2.2 Texture Synthesis

The Image Analogies work lives within a wider and well-developed
field of texture synthesis. Wei et al. [2009] provide an excellent
survey of the available methods. In principle, any of the methods
in the literature could provide the basis for a by-example styliza-
tion system. We use a scheme based on PatchMatch [Barnes et al.
2009] because of its simplicity, good performance, parallelizabil-
ity, and suitability for adaptation to our needs. It is possible that
texture synthesis algorithms based on PCA vectors (e.g., [Lefebvre
and Hoppe 2006]), global optimization (e.g., [Kwatra et al. 2005])
or explicit patch transfer (e.g., [Efros and Freeman 2001; Lasram
and Lefebvre 2012]) could further improve our results.

Synthesis for animation. A number of researchers have investi-
gated using texture synthesis to create temporal image sequences,
but none have specifically addressed the problems of using tex-
ture synthesis to author high-quality non-photorealistic renderings
of character animation.

Kulla et al. [2003] extended the texture transfer algorithm of Efros
and Freeman [2001] to animations by using Image Quilting to shade
animated 3D scenes with hand-painted color and texture gradi-
ents. They propose three simple techniques to increase temporal
coherence: limited 2D re-synthesis, view-aligned 3D texturing, and
view-dependent interpolation. However, none of these is fully sat-
isfactory, causing either blending, sliding or 3D distortion artifacts.

Cao et al. [2011] use a comparable approach to stylize videos by
relying on optical flow. Hashimoto et al. [2003] and Haro [2003]
applied the Image Analogies method to low-resolution video se-
quences, using motion estimation to increase temporal coherence.
The results of these methods also exhibit sliding and popping arti-
facts, due to inaccurate motion estimation, lack of explicit handling
of occlusion, and low overall resolution.

A family of work in flow-guided texture synthesis combines texture
synthesis with advection, but addresses different problems from
ours. Bargteil et al. [2006] and Kwatra et al. [2007] generate tem-
porally coherent textures on the surface of liquids to create surface
details such as waves or bubbles. Han et al. [2006] synthesize ani-
mated patterns on the surface of 3D meshes to help visualize flow
fields. Wei and Levoy [2000] synthesize video textures. Unlike our
work, none of these applications addresses occlusion during the tex-
ture synthesis process.

Bonneel et al. [2010] use guided texture synthesis to create a sys-
tem that targets near-interactive pre-visualization of natural en-
vironments. Their system provides the quality needed for pre-
visualization using only approximate geometry, while operating

within the constraints of near real-time performance. The appli-
cation of character animation, however, demands a much higher-
quality result with better temporal coherence, but allows for offline
computation.

Image and texture interpolation. Our keyframe in-betweening
approach tackles the problem of finding smooth interpolation paths
between two textured images. In a more specific context, methods
have been proposed to metamorphose or morph one static texture
into another. They can be classified into two main families: (1)
approaches that compute a global warping field between the two
textures and linearly blend them after alignment [Liu et al. 2002;
Matusik et al. 2005; Lai and Wu 2007] or compute both simultane-
ously [Kabul et al. 2011]; (2) methods that locally warp a feature
map and use it for guided pixel- or patch-based texture synthesis
[Zhang et al. 2003; Ray et al. 2009; Ruiters et al. 2010].

The latter approaches have the major benefits of limiting blending
artifacts and allowing topology changes. Gradient domain blending
can be used to further smooth patch boundaries and avoid explicit
feature map computation [Darabi et al. 2012]. Extending this idea,
Shechtman et al.[2010] generate morphing sequences between pairs
of static images by optimization. Our method takes inspiration from
these techniques, while dealing with additional challenges because
painted keyframes encode both texture and structure information
and relate to each other through complex 3D motion paths with
occlusions.

3 Temporally Coherent Image Analogies

The original Image Analogies method transforms an input image I
into a stylized version Î using an example-based style transforma-
tion defined by an style input image S and a corresponding style
output image Ŝ (Figure 2). The transformation is defined by a map-
ping, or offset field, M from each point p in Î to a corresponding
point M(p) in Ŝ, such that Î(p) = Ŝ(M(p)). A good mapping
M minimizes a goal functionG(p), whereGmeasures how closely
the analogy between S and Ŝ is transferred to I and Î . In the lan-
guage of Wei et al. [2009], this is a “pixel-based” texture synthesis
method where the fundamental operation is to change the mapping
at an individual output pixel.

We extend this approach to an input animation It and an output an-
imation Ît by optimizing for a sequence of offset fields Mt. The
motion of the animation is defined using input velocity and orien-
tation fields (Figure 3). We encourage temporal coherence between
the frames of Ît by adding a temporal coherence term to the goal
function. To produce the sequence of offset fields Mt, we opti-
mize each frame with a method based on PatchMatch [Barnes et al.
2009], then advect the results of the previous frame to the next using
the image velocity fields.

3.1 Inputs

There are two kinds of inputs to our algorithm: (1) a CG animation
rendered into buffers containing for each frame t input shading in-
formation It, orientations O(It), and velocities V +

t and V −t ; (2)
static style buffers with input S, output Ŝ and orientations O(S).

Orientations. In order to allow the style to be used at arbitrary
orientations, we use two orientation fields: O(S) ∈ [0, π] defined
in the coordinate system of the style, and O(It) ∈ [0, π] defined
in the coordinate system of the input images. Similarly in spirit to
Lee et al. [2011], our algorithm performs rotations to compensate
for the different local orientations.

Stylizing Animation By Example • 119:3

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

Figure 3: Synthesis overview. The input to the system consists of an
animation with input It, orientationsO(It), velocity fields forward
and backward in time (V +

t and V −t), and a static style with input S,
output Ŝ, and orientation O(S). The optimization scheme matches
patches of the style with the input through an offset field Mt, while
minimizing the goal function Gt. The output animation Ît is found
by looking up pixels in the style output Ŝ using the offset field.

There is an inherent ambiguity in the orientation of patterns that
resemble lines or stripes because a rotation by an angle of π will
leave the dominant orientation unchanged. As a result, the appro-
priate rotation is also ambiguous. To prevent a visible branch cut
we always use the smallest angle of rotation φ(p1,p2) that brings
the two directions O(It)(p1) and O(S)(p2) into alignment.

The orientation fields O(It) and O(S) can either be authored by
a user for complete control (e.g., by rendering a vector field de-
fined on the 3D surface), or computed automatically. Except where
otherwise explicitly stated, we compute these orientation fields au-
tomatically as the by-pixel structure tensor of the grayscale im-
age [Granlund and Knutsson 1995]. Structure tensors have the ben-
efit over scalar angles of allowing meaningful interpolation and av-
eraging.

Velocity and Occlusion. To stylize animations, we need to know
how the input scene moves and when elements of the scene are
occluded or disoccluded. To do so, we render two velocity fields
for the input animation sequence: V +

t (p) and V −t (p). The field
V +
t (p) is a forward finite difference of image-space velocity. A

point visible at p in frame t moves to p + V +
t (p) in frame t + 1.

Similarly, V −t (p) is a backward finite difference. A point visible at
p in frame t came from p− V −t (p) in frame t− 1.

V +
t (p) tells us where p will project in the next frame, and V −t (p)

tells us where it projected in the previous frame. Combined, they
also tell us whether or not p was occluded in the previous frame
t−1. In absence of occlusion, following the velocity field backward
and then forward, we should come back to the starting position, i.e.,
(p− V −t (p)) + V +

t−1(p− V −t (p)) = p. From this condition, we

frame 0 frame 10 (no χ) frame 10 (with χ)

Figure 4: Effect of occlusion term χ. When a foreground object
moves across a static background (left), naively enforcing temporal
coherence can leave trails as the background is disoccluded (mid-
dle). Including occlusion information in the advection and tempo-
ral coherence terms allows the background to resynthesize at each
frame and removes the trails (right).

define the following occlusion function which is 1 if p was not
occluded at frame t− 1:

χ−(p, t) =

{
1 if ||V +

t−1(p− V −t (p))− V −t (p)||2 < ε
0 otherwise

Similarly we define χ+(p, t) using the backward velocities at
frame t+ 1:

χ+(p, t) =

{
1 if ||V −t+1(p + V +

t (p))− V +
t (p)||2 < ε

0 otherwise

The velocities are rasterized on the pixel grid, potentially introduc-
ing round-off error; we compare them with a certain tolerance ε = 2
in our implementation. The effect of the occlusion term is demon-
strated in Figure 4.

3.2 Goal Function

Following Hertzmann et al. [2001], our algorithm is based on re-
peated evaluations of a goal function for the offset at individual
pixels. When new offsets are found that improve the goal function,
those offsets are updated. The goal function is a property of a local
neighborhood and has the form:

Gt(p) =
∑

∆p∈Ω

w(∆p)g(p,∆p) (1)

where Ω represent the set of vectors from p to its neighbors. We
typically use 9 × 9 pixel square neighborhoods. The weights
w(∆p) give more importance to samples near the center of the
neighborhood. We use weights with Gaussian fall-off (variance
σ = 3 in our experiments).

w(∆p) = e
−|∆p|2

2σ2

Our overall goal function is constructed as the weighted sum of
four main contributing goal functions and two optional terms, each
representing a distinct aim of the synthesis.

g(p,∆p) = woutgout(p,∆p) + wingin(p,∆p) (2)
+ wscgsc(p,∆p) + wtcgtc(p)

+ whgh(p) + wdtgdt(p)

The weights wout, win, wsc, wtc, wh and wdt allow the user to
balance the relative importance of the different goals; the values
used for generating our results are provided in the supplemental
accompanying video. The three first terms match the goal proposed
by Hertzmann et al. [2001], modified to allow per-pixel orientation.

119:4 • P. Bénard et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

Figure 5: Histogram term comparison. The optimization may use
small patches of the style many times, producing an undesirable re-
peating pattern and a hotspot in the style histogram heatmap (solid
box). With a penalty for histogram hotspots, the optimization is en-
couraged to use more of the style (e.g., dashed box), producing a
more varied output.

Output term. The first goal of our texture synthesis is to make
each local neighborhood of the output image Ît near p “look like”
a corresponding neighborhood of the style output Ŝ near Mt(p).
In order to compare the neighborhoods of Ît and Ŝ, we have to
take into account the rotation φ(p,Mt(p)) between the local co-
ordinates of the input and the style images. Let Rotφ denote the
rotation of a vector by angle φ. Then the point in the style corre-
sponding to p + ∆p in the output is given by:

Ct(p,∆p) = Mt(p) + Rotφ(∆p)

Now we can write our first goal as:

gout = |Ît(p + ∆p)− Ŝ(Ct(p,∆p))|2 (3)

Note that Eq. 3 is implicitly summed over the patch neighborhood
∆p due to the summation in the global goal function (Eq. 1). We
experimented with comparison in RGB and Lab∗ color spaces. The
Lab∗ space can significantly improve the results in cases where
adjacent regions are similar in RGB space (e.g., the skater’s face
and suit, Figure 1). However, we find that when these regions are
separated into layers (Section 4), RGB calculations are sufficient.

Input term. The second goal of our synthesis is for the offsets to
be chosen so that each neighborhood of the input image I will be
matched to a neighborhood of the style input S that looks similar.
We achieve this with the following goal function:

gin = |It(p + ∆p)− S(Ct(p,∆p))|2 (4)

Spatial coherence term. The third goal is for the mapping p 7→
Mt(p) to be spatially as continuous as possible. Ashikhmin [2001]
showed spatial continuity to be an important component of pixel-
based texture synthesis techniques. To promote continuity, our third
component of the energy is:

gsc = min(|Mt(p + ∆p)−Ct(p,∆p)|2, rmax) (5)

This term is the squared distance between the actual offset at
p + ∆p and the offset one would expect from p if the offset field
was a simple rotation of the style output. We bound the error to
measure how much of the mapping is continuous; the actual dis-
tance in the style images between discontinuous offsets is unim-
portant. Since our use of sizeable neighborhoods in gout and gin
already produces spatial coherence in the offsets, a small value of
wsc has been sufficient for our purposes.

Figure 6: Line stylization. Synthesis is guided by the distance
transform of input lines D(S) and D(I) as well as the orientations
(not shown).

Temporal coherence term. Our fourth goal is to prevent unnec-
essary or sudden changes in time, i.e., to minimize color variations
of the output images along valid motion paths (non-occluded posi-
tions). We use alternatively two versions of this term (Section 3.3),
one looking backward in time g−tc and the other forward g+

tc.

g−tc = χ−(p, t)|Ît(p)− Ît−1(p− V −t (p))|2 (6)

g+
tc = χ+(p, t)|Ît(p)− Ît+1(p + V +

t (p))|2 (7)

Histogram term. To penalize repeated patterns, we introduce a
histogram term which encourages diversity in the output image by
penalizing repetitions of the same offsets. In the spirit of Chen and
Wang [2009], we build the histogram of the offsets fieldH(Mt) by
counting the number of occurrences of each offset. This is equiv-
alent to a map of the frequency of every pixel of Ŝ in Ît. We can
then write the following goal:

gh = hs max(0,H(Mt)(p)− hτ) (8)

The parameters hτ and hs allow the user to separately control the
minimum number of repetition after which this penalty starts to ap-
ply and its strength once the histogram value exceeds this threshold.
To further encourage spatial variation, we blur the histogram with
a small Gaussian kernel. Figure 5 illustrates the effect of this term
on a painterly style. Unlike PatchMatch completeness term, which
ensures that the synthesized image contains as much visual infor-
mation from the exemplar as possible, this histogram term imposes
a less restrictive constraint that prevents excessive repetition.

Distance transform term. Starting from raster lines extracted in
image-space, painterly stroke styles can be produced by including
the distance from input line pixels in the optimization. We compute
the distance transform of black pixels in the input image D(It) and
style input D(S) and define a goal that encourages them to match.

gdt = |min(D(It)(p)−D(S)(Mt(p)), dmax)|2 (9)

We bound the distance transform by dmax (10 pixels at the high-
est resolution in our implementation) to roll back to regular syn-
thesis when p is far enough from the lines. Figure 6 shows the
result of stroke synthesis on a simple scene. A major benefit of
this approach is that it does not require a temporally coherent vec-
tor representation of the lines. Constructing such a representation
is a difficult problem, especially for lines extracted in image-space
(e.g., [Bénard et al. 2012]).

Stylizing Animation By Example • 119:5

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

3.3 Solution Method

For an animation sequence with T frames and N pixels per frame,
the solution space of offset fields Mt has O(TN) dimensions
(roughly 109 for our examples). We can only afford to explore
a small subset of this space, so we have adopted several heuris-
tics to find good solutions. We optimize the animation frames
in a forward-backward, coarse-to-fine order (Figure 7), sweeping
through the animation several times for each resolution level. For
each frame and resolution level, we apply several iterations of par-
allel PatchMatch [Barnes et al. 2009] to improve the offset field
Mt. Together, these methods guide the optimization to a pleasing
result with a small number of iterations.

Forward-Backward Coarse-to-Fine. Coarse-to-fine spatial op-
timization is a standard technique in texture synthesis [Wei et al.
2009], used to improve both the rate of convergence and quality of
the final result. We adopt coarse-to-fine optimization as the outer-
most loop of the algorithm: the entire animation is optimized for
each resolution level, then upsampled to produce the starting guess
for the next finer resolution.

At each resolution level, we sweep through the time dimension se-
quentially: we optimize frame t fully, then advect the solution to
frame t + 1 to initialize the next optimization. When the opti-
mization reaches the last frame, the sweep reverses and reoptimizes
frame t, incorporating the solution of frame t − 1. Sweeping for-
wards and backwards through time allows the optimization to find
temporally coherent results for sequences of arbitrary length. The
results in this paper use four levels of resolution and one pair of
forward-backward sweeps.

To take into account the solution of the forward sweep during the
backward pass, we initialize each pixel of the offset field at frame t
by randomly choosing between the previous solution at frame t and
the advected result from frame t + 1 (Figure 7 second row). This
random merge is also applied during upsampling to initialize the
first sweep of level l from the previous frame at level l and the result
at level l− 1 (Figure 7 third row). The random merge is well suited
to PatchMatch optimization, because it effectively makes both the
forward and backward (resp. coarse and fine) solutions available
to the propagation stage. For every pixel in the merged field, it is
likely to find a neighboring pixel from the forward (resp. coarse)
solution and a neighboring pixel from the backward (resp. fine)
solution. If a pixel is occluded in either of the sources for merging
(last sweep or last level), the unoccluded source is used.

Parallel PatchMatch. The core of the optimization at each frame
is parallel PatchMatch [Barnes et al. 2009]. PatchMatch is a fast
algorithm for computing dense approximate nearest neighbor cor-
respondences of image neighborhoods for arbitrary distance func-
tions. It is a randomized algorithm that relies on iteratively im-
proving a set of correspondences until convergence by alternating
propagation and random search steps. It has been shown to perform
very well in comparison with other algorithms [Barnes et al. 2010].

In the spirit of a Jacobi iteration, the parallel version of PatchMatch
independently computes updates for each nearest-neighbor corre-
spondence in parallel, without regard for the impact of one update
on another. More specifically, for each pixel in parallel, Eq. 1 is
evaluated for a set of candidate offsets, ignoring interactions be-
tween overlapping neighborhoods. The best candidates are then
applied together and the process repeated. While a single pass of
the parallel update is less effective than a serial update, the speed-
up due to parallelism on GPUs more than compensates, and makes
this an attractive scheme. Although this does not offer theoretical
guarantees of convergence, we observed convergence to a visually
pleasing solution after 3 or 4 full iterations in all our experiments.

Figure 7: Forward and backward sweeps. To create temporal co-
herence, multiple forward and backward sweeps are made through
the entire animation at each level of coarse-to-fine synthesis. At
each sweep, the last offset field at frame t is randomly merged with
the advected result from frame t − 1 (forward sweeps) or t + 1
(backward). The randomly merged result forms the starting guess
for the next round of optimization.

Advecting and interpolating offsets. In order to initialize the
solution at frame t, we advect the solution from frame t − 1 as
follows. For each pixel p, we consider whether or not it was visible
in the previous frame by consulting χ−(p, t). If it was occluded,
a random offset is used if we are on the coarsest level, or else the
upsampled result is used. If it was visible, we advect the offset of
the previous frame by looking up Mt−1(p − V −t) to compute an
estimate of its prior match. During the backwards pass, we compute
the prior match estimate based on Mt+1(p + V +

t) and χ+(p, t).

When looking up an offset during advec-
tion, we avoid interpolating neighboring
offsets as interpolation across discontinu-
ities in the offset field produces spurious
results. Instead, we first find the nearest-
neighbor sample p̃ to p−V −t , then extrap-
olate using the orientation at p̃ and the style
orientation at Mt−1(p̃) (inset figure). This
lookup scheme provides sub-pixel accuracy
while avoiding interpolation of offset values. Sub-pixel accuracy in
this lookup is important when optimizing at coarse scales, where
even moderate movements may be smaller than a pixel. The same
extrapolation scheme is used when upsampling the coarse solutions
to provide meaningful results around offset field discontinuities.

3.4 Results

Figure 8 shows an example result for both shading and lines. The
style output Ŝ is respectively a hand-painted watercolor wash (Fig-
ure 8(a)) and irregular strokes (Figure 6) produced by an artist on
paper and then scanned. The style input S was created by reg-
istering computer-generated gradients and lines in a drawing pro-
gram. The input sequences are a rendering with conventional shad-
ing, and lines extracted from object boundaries. Watercolor texture
was applied to the shading, and strokes applied to the lines using
our method. Finally, the texture and lines were composited with
solid colors from the original input (Figure 8(d)).

For still images, our algorithm is similar to the original Image
Analogies work. The most salient differences are our use of ori-
entation fields and our use of parallel PatchMatch for optimization.
The use of orientations extends the artistic range of our method to
include stylized outlines such as in Figure 6 and 8, while Hertz-
mann et al. [2001] provide only textured examples. By using paral-
lel PatchMatch, we were able to implement our algorithm in CUDA

119:6 • P. Bénard et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

(a) Style input and output (line style as in Figure 6)

(b) Input images: shading and lines

(c) Output images: texture and strokes

(d) Composite with color overlay

Figure 8: Watercolor style with lines. Grayscale images are styl-
ized with a watercolor style; the edge map is stylized using strokes.
The image is composited with colors from the original rendering.

and achieve running times for still images (1920× 1080 pixels) of
one and a half minutes or less on a NVIDIA Quadro 5000 (Fermi)
GPU. Note that computation time scales with image resolution and
not scene complexity.

Most notably, TCIA provides strong temporal continuity during an-
imation, especially compared to independent frame-by-frame styl-
ization. Please see the two accompanying videos to fully appreciate
this quality for various styles on simple and complex animations.

4 Keyframe Constraints

The analogy metaphor is a powerful, versatile and intuitive way to
specify a style, but it lacks the degree of control and art direction
that a direct interaction system can provide. Direct control is par-
ticularly important for stylizing animated characters, and TCIA can
easily be extended to allow direct control by incorporating painted
keyframes as hard constraints.

(a) Input image (b) Full keyframe (c) Layer decomposition

(d) Closeup (overdraw and partial transparency)

Figure 9: A painted keyframe and its decomposition into five lay-
ers: suit, skin (face and hands), eyes, muffs and skate. This decom-
position allows overdraw and partial transparency without compro-
mising the quality of the advection.

(a) Colors
(frame i)

(b) Vel. field
(frame i+1)

(c) Advection
(frame i+1)

(d) Vel. field
extrapolated
(i+1)

(e) Advection
extrapolated
(i+1)

Figure 10: Advection of colors (a) using a standard velocity field
(b) can leave overpainted regions behind (c). Our approach ex-
trapolates the velocity field into the background of each layer (d,
original outline in white), allowing advection outside the borders
of the shape (e).

The artist selects a subset of the input frames that she considers to
be characteristic poses (one every 10 to 20 frames), then draws over
those frames the desired final result using her favorite painting sys-
tem (e.g., Adobe Photoshop R©, Corel Painter R©). For best results,
shading variations in the input should be respected in the stylized
painting (Figure 9). These keyframes form both hard constraints
that are exactly matched during the optimization, and pairs of style
inputs/outputs for the modified TCIA algorithm (Section 4.1).

We are particularly interested in painterly visual styles, which are
generally incompatible with the perfect boundaries of computer
graphics rendering. To enable the artist to paint loosely across
boundaries, we decompose our scene into separate layers that can
be painted separately (Figure 9(c)). For each element, we extrapo-
late the image-space velocity fields using the distance transform of
the input layer. As a result, if the artist chooses to apply paint be-
yond the rendered boundary of an element in the input animation,
the overpainted regions will be carried along sensibly by the extrap-
olated velocity field (Figure 10(e) vs. 10(c)). This decomposition

Stylizing Animation By Example • 119:7

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

Figure 11: Comparison with keyframe advection. An artist paints keys at frames 20 and 34, using the input rendering (boxed) as reference.
Advecting the keyframes to the intermediate frame 27 gives incomplete results due to occlusions (character body) and conflicting results due
to color choices by the artist (face). Our method fills incomplete areas and chooses an appropriate mix in conflicting areas.

into layers allows overdraw and partial transparency (Figure 9(d)),
and reduces the ambiguity of the analogy by constraining the opti-
mization search space to colors of the same layer.

4.1 Optimization Changes

The use of keyframes in the TCIA algorithm raises new challenges.
The stylized animation has to match exactly the hard painted con-
straints while smoothly changing in time and respecting the anal-
ogy. As illustrated in Figure 11, the naı̈ve solution of advecting
the colors from the two nearest keys and cross-fading does not pro-
duce satisfying results. Occlusions give rise to incomplete advec-
tion and holes that need to be in-painted, while complete two-way
advection gives rise to conflicting colors that need to be blended.
Linear blending neither respects the shading variations of the input
animation, nor produces sharp textured outputs. To address these
issues, we turn the TCIA algorithm into a nonlinear in-betweening
technique by adding new temporal terms in the optimization and
facilitating transitions between keyframes.

Modified goal function. The temporal coherence term defined
in Section 3.2 is asymmetric with respect to the time direction (for-
ward or backward pass). This property enhances temporal continu-
ity by penalizing any changes in time, which is generally suitable
for unconstrained synthesis. However, with keyframes, this goal
tends to privilege the most recently visited key, which prevents the
interpolation from smoothly matching the next key. To solve this
problem, we replace gtc by two new goals in the optimization that
correspond to the time derivatives of gin and gout.

The input time-derivative goal encourages the synthesized anima-
tion to change the same way the input animation does. For the visi-
ble pixels at the previous frame, it measures the temporal variation
of the input images It and It−1 and compares it with the corre-
sponding variation in the style input S at the offsets Ct and Ct−1.

g−∂in =χ−(p + ∆p, t)|(It(p + ∆p) (10)

− It−1(p + ∆p− V −t (p + ∆p)))

− (S(Ct(p,∆p))− S(Ct−1(p− V −t (p),∆p)))|2

By replacing It and S in g−∂in with Ît and Ŝ, we have an output
time-derivative term g−∂out. This term allows the output to change
consistently with spatial variation in the style, but we found that its
influence was limited in practice.

We define similar terms g+
∂in and g+

∂out using velocities V +
t for the

backward sweeps.

In-Betweening algorithm. Apart from these new terms in the
goal function, we make three important changes to the algorithm
described in Section 3.3.

First, when a forward or backward sweep reaches a keyframe, the
content of the key is copied and replaces the currently synthesized
image. This ensures that keyframes are perfectly matched, and
gives the best possible starting point for advection to the next frame.
Partial keyframes can be defined by providing an extra mask as in-
put, or using the alpha channel of the image. Semi-transparency of
partial keys is an open problem that we leave for future work.

Second, we modify the random merging scheme to bias towards the
closest keyframe, which encourages smooth convergence. Given
frame t and the indices of the last and next keys tl ≤ t and tn ≥ t,
we randomly choose pixels from the forward pass with probability
(tn − t)/(tn − tl) and from the backward pass with probability
(t− tl)/(tn − tl).

Finally, we modify the propagation and random search steps of the
PatchMatch algorithm to handle multiple keyframes. As a pre-
process, we follow the 3D velocity field from one keyframe to
the next to create ribbons that connect a keyframe pixel pt to its
corresponding pixels ptl and ptn in the neighboring keyframes.
Each ribbon is an image-space representation of the 3D path of
the associated point, e.g.,, the tip of the character’s nose. During
the PatchMatch optimization, the ribbons extend the search space
to include both the spatial neighbors in the current keyframe and
the spatial neighbors of the corresponding point in neighboring
keyframes. This approach greatly eases and smooths transitions
between keyframes and allows efficient exploration of the most rel-
evant parts of the search space.

4.2 Results

Figure 1 shows the result of in-betweening two keyframes of an an-
imation sequence with strong shape and shading variations. Thanks
to the image analogy approach, our algorithm finds a non-linear in-
terpolation path between the keys to match the non-linear change
in brightness. It also adapts to the “squash and stretch” distortions
and 3D motion (e.g., head rotation) of the character.

Figure 12 shows final composites of keyframe in-betweening for
two polished 3D character animations and three styles painted by
different artists (please see the accompanying videos for the full se-
quences and breakdowns). On the bottom row, only the first and
last overlays are keyframes. Our method successfully handles oc-
clusions of the legs and their variations in orientation. The top
row shows a more “three-dimensional” example with complex oc-
clusions and disocclusions and stronger lighting variations. Our

119:8 • P. Bénard et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

Figure 12: Results of keyframe in-betweening. Upper left: first and third overlays are keyframes. Upper right: third overlay is a keyframe.
Bottom: first and last overlays are keyframes.

algorithm finds convincing in-betweens that faithfully interpolate
the keyframes even when advection only provides a limited starting
point.

These sequences demonstrate how our system might be used in a
production context, and thus include a range of different effects,
not all produced by our system. The skater is rendered entirely with
our method, including changes in illumination, as are the snowdrifts
and the pools of light on the surface of the ice for the top row se-
quences. The snowdrifts and background of the second row are
hand-painted. The reflection of the skater is added using a standard
compositing software. The shafts of light are rendered using a con-
ventional 3D rendering package. The surface of the ice is texture
mapped, as is the sky background. The scraping effect around the
skates is generated with a particle system and composited.

5 Limitations, Future Work and Discussion

This paper presents the first method for automatically in-
betweening 2D painted keyframes based on 3D character anima-
tion. We believe the method, as presented, is a practical technique
for animation production. We have extended the utility of Image
Analogies by generalizing the examples over 2D rotations. We have
made it possible for image analogies-based algorithms to handle
line stylization. We have introduced controls to prevent over-use of
small regions of the input examples. We have provided means for
dealing with irregular boundaries. And we have developed an opti-
mization algorithm that produces high-quality temporally coherent
results using practical amounts of computing resources.

In the course of this work, our goal was to provide adequate solu-
tions to each of the constituent sub-problems. In no case would we
claim that these solutions are optimal; there are considerable op-
portunities to push the work further, improving the quality of the
result, the ease of use, or reducing the resources required.

Goal function weights. Finding an adequate balance between
the different goals in the optimization requires some experimen-
tation. The parameters are style specific; for instance, structured
patterns (e.g., hatching or paint strokes) need higher spatial coher-
ence than stochastic or smooth textures (e.g., watercolor wash) to
produce outputs that match the target style (see the supplementary
video for examples). There is also an important tradeoff between
the desired amount of spatial continuity and temporal coherence.
Pushing one or the other to its extreme leads either to patches of
texture abruptly appearing and disappearing, or disconnected pix-
els cross-dissolving. The parameters used for each sequence are
shown in the supplementary video. The values were chosen through
experimentation. We found that for most cases, parameters within
a factor of two from the default values produced good results.

Improved optimization. We use PatchMatch [Barnes et al. 2009]
for optimizing our goal function, as it produces visually pleasing
results while mapping easily to GPUs. Our approach behaves well
in a broad range of situations with objects moving at moderate to
high speeds with varied lighting. It performs less well for large,
continuous regions that change gradually with illumination or cam-
era motion, since the optimization is not allowed to blend colors
from the style. In areas of gradual change, discrete patches can
sometimes appear and disappear, causing distracting artifacts. We
believe smoother transitions could be achieved by incorporating a
more sophisticated optimization scheme such as gradient domain
optimization [Darabi et al. 2012], or search across scales and ro-
tations [Barnes et al. 2010], but have not yet investigated such ap-
proaches.

Our algorithm is fully parallel in space but sequential in time. While
this allows almost interactive feedback when adjusting parameters
to synthesize static frames, the final high-resolution result takes 10
to 12 minutes per final frame (with the ability to see early previews
at coarse spatial resolution). Parallelization in time seems a natural
extension, but our experiments with a simple temporal coarse-to-

Stylizing Animation By Example • 119:9

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

fine scheme have shown non-trivial obstacles. The sequential na-
ture of the current algorithm plays an important role in producing
temporally coherent results, and is difficult to match with a fully
time-parallel synthesis.

Better analogy. In the current work, the only data we use from
our input animation is the rendered image intensities and the ve-
locity field. This creates situations where the proper stylization is
ambiguous. In many cases, better results could probably be ob-
tained by augmenting the input with additional data. We colored
the cheeks and nose of our 3D character in red and his lips in black
to reduce the ambiguity of the proper stylistic correspondences,
but one can certainly imagine providing additional rendered data
besides the rendered image intensities to improve the algorithm’s
ability to establish the desired correspondence. Normals, curvature
information and texture coordinates are examples of additional data
that may be used effectively.

Histogram. The histogram term provides an indirect means of
controlling stylization by analogy. However, it only considers the
distribution of the output offsets without taking into account the
statistics of the input image and style input. If the input is es-
pecially dark, then it makes sense to bias the offsets towards the
dark areas of the style input. Automatically estimating an approxi-
mate desirable target distribution based on the inputs could signifi-
cantly improve the effectiveness of the histogram control. The his-
togram control might also be modified to take into account distance
to nearby keyframes.

Layers. Our simple decomposition into layers has the important
benefit of matching the traditional pipeline of digital artists, allow-
ing them to use regular drawing software. However, this decom-
position is not always possible – especially for temporally self-
occluding parts such as the legs and arms of the character – which
prevents overpaint in those regions. Taking inspiration from Bon-
neel et al. [2010], it might be possible to generate a guide with
fuzzy boundaries respecting self-occlusions. This would, however,
require the artist to specify extra depth or inequality relations when
painting the keys.

Additional inputs. Our pipeline is generic enough to apply on
any animated input with known velocities. This makes the ap-
proach directly applicable to live-action videos where accurate for-
ward and backward optical flows can be extracted using vision al-
gorithms. Spatio-temporal segmentation would also be required for
layer decomposition. In principle, traditional 2D animations could
be handled as well, using an estimated frame-to-frame correspon-
dence (e.g., computed with the method of Sýkora et al. [2011]).

Aside from any details of our approach, we hope a few of its under-
lying ideas will be key enablers of future temporally-coherent im-
age stylization. Creating temporal coherence by optimization rather
than construction allows a rich variety of visual styles. Close at-
tention to occlusion, disocclusion and irregular boundaries enables
high-quality results that retain the warmth and organic feel of hand-
painted imagery. And the proper use of example-based methods
puts control in the hands of the artist, where it belongs.

Acknowledgements

We would like to thank the anonymous reviewers, Tony DeRose,
Mark Meyer, Aaron Hertzmann and Joëlle Thollot for their com-
ments and advice. Thanks to our many Pixar colleagues who
worked on these shots. Teddy Newton, Sanjay Patel, Don Shank,
Jamie Frye, Ralph Eggleston and Angus MacLane provided won-
derful artwork and art direction, and pushed us to go farther. We

appreciate Andrew Schmidt, Brian Tindall, Bernhard Haux and
Paul Aichele for creating a character capable of hitting exagger-
ated poses appropriate for NPR rendering, and we also thank Danny
Nahmias, Mach Kobayashi, Fernando de Goes and Sue Kalache for
their contributions to this project.

References

AGARWALA, A., HERTZMANN, A., SALESIN, D. H., AND SEITZ,
S. M. 2004. Keyframe-based tracking for rotoscoping and ani-
mation. ACM Transactions on Graphics 23, 3, 584–591.

ASHIKHMIN, M. 2001. Synthesizing natural textures. In Proceed-
ings of the 7th symposium on Interactive 3D graphics, 217–226.

BARGTEIL, A. W., SIN, F., MICHAELS, J., GOKTEKIN, T., AND
O’BRIEN, J. 2006. A texture synthesis method for liquid anima-
tions. In ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 345–351.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. B. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Transactions on
Graphics 28, 3, 24:1–24:11.

BARNES, C., SHECHTMAN, E., GOLDMAN, D. B., AND FINKEL-
STEIN, A. 2010. The generalized PatchMatch correspondence
algorithm. In Proceedings of the 11th European conference on
computer vision conference on Computer vision, 29–43.

BÉNARD, P., BOUSSEAU, A., AND THOLLOT, J. 2009. Dynamic
solid textures for real-time coherent stylization. Proceedings
of the 2009 symposium on Interactive 3D graphics and games,
121–127.

BÉNARD, P., LAGAE, A., VANGORP, P., LEFEBVRE, S., DRET-
TAKIS, G., AND THOLLOT, J. 2010. A dynamic noise primitive
for coherent stylization. Computer Graphics Forum 4, 29, 1497–
1506.

BÉNARD, P., BOUSSEAU, A., AND THOLLOT, J. 2011. State-of-
the-Art Report on Temporal Coherence for Stylized Animations.
Computer Graphics Forum 30, 8, 2367–2386.

BÉNARD, P., JINGWAN, L., COLE, F., FINKELSTEIN, A., AND
THOLLOT, J. 2012. Active Strokes: Coherent Line Styliza-
tion for Animated 3D Models. In NPAR 2012 - 10th Interna-
tional Symposium on Non-photorealistic Animation and Render-
ing, ACM, 37–46.

BONNEEL, N., VAN DE PANNE, M., LEFEBVRE, S., AND DRET-
TAKIS, G. 2010. Proxy-guided texture synthesis for rendering
natural scenes. In 15th International Workshop on Vision, Mod-
eling and Visualization, 87–95.

BOUSSEAU, A., NEYRET, F., THOLLOT, J., AND SALESIN, D.
2007. Video watercolorization using bidirectional texture advec-
tion. ACM Transactions on Graphics 26, 3, 104.

CAO, C., CHEN, S., ZHANG, W., AND TANG, X. 2011. Auto-
matic motion-guided video stylization and personalization. In
Proceedings of the 19th ACM international conference on Mul-
timedia, 1041–1044.

CHEN, J., AND WANG, B. 2009. High quality solid texture syn-
thesis using position and index histogram matching. The Visual
Computer 26, 4, 253–262.

DANIELS, E. 1999. Deep canvas in Disney’s Tarzan. In ACM
SIGGRAPH 99 Conference abstracts and applications, 200.

119:10 • P. Bénard et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding. ACM Transactions on
Graphics 31, 4, 82:1–82:10.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. In Proceedings of SIGGRAPH
’01, 341–346.

GRANLUND, G. H., AND KNUTSSON, H. 1995. Signal Processing
for Computer Vision. Springer.

HAN, J., ZHOU, K., WEI, L.-Y., GONG, M., BAO, H., ZHANG,
X., AND GUO, B. 2006. Fast example-based surface texture
synthesis via discrete optimization. The Visual Computer 22,
9-11.

HARO, A. 2003. Example based processing for image and video
synthesis. PhD thesis. AAI3117934.

HASHIMOTO, R., JOHAN, H., AND NISHITA, T. 2003. Creating
various styles of animations using example-based filtering. In
Computer Graphics International, 312–317.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proceedings
of SIGGRAPH ’01, 327–340.

KABUL, I., PIZER, S. M., ROSENMAN, J., AND NIETHAMMER,
M. 2011. An Optimal Control Approach for Texture Metamor-
phosis. Computer Graphics Forum 30, 8, 2341–2353.

KAGAYA, M., BRENDEL, W., DENG, Q., KESTERSON, T.,
TODOROVIC, S., NEILL, P. J., AND ZHANG, E. 2011. Video
painting with space-time-varying style parameters. IEEE Trans-
actions on Visualization and Computer Graphics 17, 1, 74–87.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: drawing
strokes directly on 3D models. In ACM Transactions on Graph-
ics, vol. 21, 755–762.

KASS, M., AND PESARE, D. 2011. Coherent noise for non-
photorealistic rendering. ACM Transactions on Graphics 30, 4,
30:1–30:6.

KULLA, C., TUCEK, J., BAILEY, R., AND GRIMM, C. 2003. Us-
ing texture synthesis for non-photorealistic shading from paint
samples. In Proceedings of the 11th Pacific Conference on Com-
puter Graphics and Applications, 477–481.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans.
Graph. 24, 3, 795–802.

KWATRA, V., ADALSTEINSSON, D., KIM, T., KWATRA, N.,
CARLSON, M., AND LIN, M. C. 2007. Texturing fluids. IEEE
Transactions on Visualization and Computer Graphics 13, 5,
939–952.

KYPRIANIDIS, J. E., COLLOMOSSE, J., WANG, T., AND ISEN-
BERG, T. 2013. State of the “art”: A taxonomy of artistic
stylization techniques for images and video. Visualization and
Computer Graphics, IEEE Transactions on 19, 5, 866–885.

LAI, C.-H., AND WU, J.-L. 2007. Temporal texture synthesis
by patch-based sampling and morphing interpolation. Computer
Animation and Virtual Worlds 18, 4-5, 415–428.

LASRAM, A., AND LEFEBVRE, S. 2012. Parallel patch-based
texture synthesis. In Proceedings of the 4th ACM SIGGRAPH /
Eurographics conference on High-Performance Graphics, 115–
124.

LEE, H., SEO, S., AND YOON, K. 2011. Directional texture trans-
fer with edge enhancement. Computers & Graphics 35, 1, 81–
91.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. ACM Transactions on Graphics 25, 3, 541–548.

LIN, L., ZENG, K., LV, H., WANG, Y., XU, Y., AND ZHU, S.-
C. 2010. Painterly animation using video semantics and feature
correspondence. In Proceedings of the 8th International Sympo-
sium on Non-Photorealistic Animation and Rendering, no. 212,
73–80.

LIU, Z., LIU, C., SHUM, H.-Y., AND YU, Y. 2002. Pattern-based
texture metamorphosis. Proceedings of the 10th Pacific Confer-
ence on Computer Graphics and Applications 1, 184–191.

MATUSIK, W., ZWICKER, M., AND DURAND, F. 2005. Texture
design using a simplicial complex of morphable textures. ACM
Transactions on Graphics 24, 3, 787–794.

O’DONOVAN, P., AND HERTZMANN, A. 2011. AniPaint: Inter-
active Painterly Animation from Video. IEEE Transactions on
Visualization and Computer Graphics 18, 3, 475–487.

PRAUN, E., HOPPE, H., WEBB, M., AND FINKELSTEIN, A.
2001. Real-time hatching. Proceedings of SIGGRAPH ’01, 581.

RAY, N., LÉVY, B., WANG, H., TURK, G., AND VALLET, B.
2009. Material Space Texturing. Computer Graphics Forum 28,
6, 1659–1669.

RUITERS, R., SCHNABEL, R., AND KLEIN, R. 2010. Patch-based
Texture Interpolation. Computer Graphics Forum 29, 4, 1421–
1429.

SCHMID, J., SENN, M. S., GROSS, M., AND SUMNER, R. W.
2011. OverCoat: an implicit canvas for 3D painting. In ACM
Transactions on Graphics, vol. 30, 28:1–28:10.

SHECHTMAN, E., RAV-ACHA, A., IRANI, M., AND SEITZ, S.
2010. Regenerative morphing. In IEEE Conference on Computer
VIsion and Pattern Recognition (CVPR), 615–622.

SÝKORA, D., BEN-CHEN, M., ČADÍK, M., WHITED, B., AND
SIMMONS, M. 2011. TexToons. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Non-Photorealistic
Animation and Rendering, 75–84.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis us-
ing tree-structured vector quantization. In Proceedings of SIG-
GRAPH 2000, 479–488.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the Art in Example-based Texture Synthesis. In Euro-
graphics 2009 - State of the Art Report, 93–117.

WHITED, B., DANIELS, E., KASCHALK, M., OSBORNE, P., AND
ODERMATT, K. 2012. Computer-assisted animation of line and
paint in Disney’s Paperman. In ACM SIGGRAPH 2012 Talks,
SIGGRAPH ’12, 19:1.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Transactions on Graphics 25, 3,
1221–1226.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-
Y. 2003. Synthesis of progressively-variant textures on arbitrary
surfaces. ACM Transactions on Graphics 22, 3, 295–302.

Stylizing Animation By Example • 119:11

ACM Transactions on Graphics, Vol. 32, No. 4, Article 119, Publication Date: July 2013

